Strategy. Innovation. Brand.

Big Data

Baseball, Big Data, and Brand Loyalty

My hero.

My hero.

I started smoking in high school but didn’t settle on “my” brand until I got to college. My Dad smoked Camels for most of his life but I decided that was not the brand for me. (Cough, hack!) Ultimately, I settled on Marlboros.

How I made that decision is still a mystery to me. In its very earliest days, Marlboro was positioned as a “woman’s brand” with slogans like “Ivory tips protect the lips” and “Mild as May”. That didn’t work very well, so the brand changed its positioning to highlight rugged cowboys in the American west. The brand took off and along the way I got hooked.

Though I don’t know why I chose Marlboros, I do know that it was a firm decision. I smoked for roughly 20 years and I always chose Marlboro. This is why brand owners focus so much attention on the 18-to-24 year-old segment. Brand preferences established in those formative years tend to last a lifetime.

But brand preferences often form quite a bit earlier. Brand owners may actually be late to the party. For example, I chose my baseball team preferences when I was much younger.

I played Little League baseball and was crazy about the sport. In our league, the teams were named after big league teams. Even though we lived in Baltimore, I played shortstop and second base for the Chicago White Sox. (The book on me: good glove/no bat).

At the time, Luis Aparicio and Nellie Fox played shortstop and second base for the real Chicago White Sox. They were my heroes. I knew everything about them, including the fact that they both weighed about 150 pounds in the pre-steroid era. I formed an emotional connection with the White Sox at the age of 10 or 11 and I still follow them.

My brand loyalty even rubbed off on the “other” team in Chicago, the Cubbies. Their shortstop was the incomparable Ernie Banks. I had heard of the Holy Trinity and I assumed that it was composed of Luis, Nellie, and Ernie.

I thought about all this when I opened the New York Times this morning and read about the nexus of Big Data, Big League Baseball, and Brand Development. Seth Stephens-Davidowitz has used big data to probe fan loyalty to various major league teams. (Unfortunately, he omits the White Sox).

Among other things, Stephens-Davidowitz looks at fans’ birth years and finds some interesting anomalies. For instance, an unusually large number of New York Mets fans were born in 1961 and 1978. Why would that be? Probably because boys born in those years were eight years old when the Mets won their two World Series championships. Impressionable eight-year-old boys formed emotional attachments that last a lifetime.

How much is World Series championship worth? Most brand valuations focus on how a championship affects seat, television, and auxiliary revenues. Stephens-Davidowitz argues that this approach fundamentally undervalues the brand because it omits the value of lifetime brand loyalty. When he recalculates the value with brand loyalty factored in, he concludes that “A championship season … is at least twice as valuable as we previously thought.”

What’s a brand worth? As I’ve noted elsewhere, it’s hard to measure precisely. But we form emotional attachments at very early ages and they last a very long time. As Stephens-Davidowitz concludes, “…data analysis makes it clear that fandom is highly influenced by events in our childhood. If something captures us in our formative years, it often has us hooked for life.”

Is Big Data The Death Of Strategy?

More efficient. Not more competitive.

More efficient. Not more competitive.

Why is milk always at the back of the grocery store? Because of the precursor of Big Data. Let’s call it Little Data.

Retailers have always studied their customers’ behavior. An astute observer is just as valuable as mountains of data. In the era of Little Data, grocers noticed that shoppers usually waited until they needed several items before going to the store. Milk was different, however. If a household were out of milk, a family member would go to the store for the express purpose of buying milk – and only milk.

Once grocers noticed this, they moved the milk to the back of the store. Shoppers who came in only for milk might notice several other things they needed (or wanted) on the trip through the store. Rather than buying one item, they might buy half a dozen. By relocating the milk, the grocer could sell more.

What happened next is instructive. Once one grocer figured out the pattern and moved the milk to the back, all other grocers followed suit. I’ve verified this in at least a dozen countries. The milk is always at the back. No grocer can establish a competitive advantage by putting the milk at the back of the store.

What does this have to do with strategy? I’ve always subscribed to Michael Porter’s insights on the difference between operational effectiveness and strategy. In his classic article, What Is Strategy?, Porter defines operational effectiveness as doing the same things as competitors but doing them better. Strategy, on the other hand, means, “… preserving what is distinctive about a company. It means performing different activities from rivals or performing similar activities in different ways.”

In the era of Little Data, we could figure out simple things like how consumers buy milk. Now, in the era of Big Data, we can identify much more subtle patterns in much greater detail. However, the underlying dynamic doesn’t change. Once one company figures out a new pattern, every one of its competitors can also implement it. As Porter points out, “…the problem with operational effectiveness is that best practices are easily emulated. … competition produces absolute improvement in operational effectiveness, but relative improvement for no one.”

Big Data, then, is about operational effectiveness, not strategy. Yet when I read about Big Data in management journals, I sense that it’s being treated as strategic weapon. It’s not. Companies may have to invest in Big Data to keep up with the Joneses but it’s never going to be a fundamental differentiator or a strategic advantage. It’s time for Big Companies to wise up about Big Data.

My Social Media

YouTube Twitter Facebook LinkedIn

Newsletter Signup
Archives